Calculus (Tutorial # 2)

Sequences

- 1. Let $a_n = \frac{3n+4}{n+5}$, for $n \in \mathbb{N}$ then $\lim_{n \to \infty} a_n = 3$. Given an $\epsilon > 0$, find $N_{\epsilon} \in \mathbb{N}$ such that $|a_n 3| < \epsilon$ for all $n \ge N_{\epsilon}$.
- 2. (a) Suppose $a \in \mathbb{Q}$, then can you find a sequence $\{a_n\}$ of irrational numbers such that $\lim_{n \to \infty} a_n = a$?
 - (b) Suppose $a \in \mathbb{R} \setminus \mathbb{Q}$, then can you find a sequence $\{a_n\} \subseteq \mathbb{Q}$ such that $\lim_{n \to \infty} a_n = a$?
- 3. Let $b_n \geq 0$ and $b_n \to 0$ as $n \to \infty$. Let $\{a_n\} \subseteq \mathbb{R}$ be a sequence such that $|a_n a| \leq b_n$ for all $n \geq N \in \mathbb{N}$. Then using the definition of convergence of sequences, show that $a_n \to a$ as $n \to \infty$.
- 4. Let $\{a_n\} \subseteq \mathbb{R}$ be such that $\alpha \leq a_n \leq \beta$ and $\{a_n\}$ is converges to a then show that $\alpha \leq a \leq \beta$.
- 5. Let $\{a_n\} \subseteq \mathbb{R}$ is such that for each $\epsilon > 0$, $|a_n a| < 5\epsilon$, for all $n \ge N$ where N does not depend on ϵ . Then characterize such $\{a_n\}$.
- 6. Let $\{a_n\} \subseteq \mathbb{R}$ be a convergent sequence. Then using the definition of convergence of sequences show that $\{a_n^k\}$ for some fixed $k \in \mathbb{N}$ is also convergent. How about $\{a_n^k\}$?
- 7. Find all the possible conditions on $\{a_n\} \subseteq \mathbb{R}$, for which $\{a_n\}$ is convergent if and only if $\{|a_n|\}$ is convergent.
- 8. Let $\{a_n\} \subseteq \mathbb{R}$ be such that $\lim_{k \to \infty} a_{2k} = a$ and $\lim_{k \to \infty} a_{2k-1} = a$. Then is it true that $\{a_n\}$ is convergent?
- 9. Let $\{a_n\}$ be a sequence such that $|a_n| \leq \frac{1+n}{1+n+7n^2}$, for all $n \in \mathbb{N}$. Check whether $\{a_n\}$ is a Cauchy sequence or not.
- 10. Let $\{a_n\}$ be a sequence such that $|a_n a_{n-1}| \le c|a_{n-1} a_{n-2}|$, for some constant 0 < c < 1 and for all $n \ge 2$. Show that $\{a_n\}$ is convergent.
- 11. Let $\{a_n\}$ be a sequence of positive real numbers. Assume that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$, with l < 1. Prove that $a_n \to 0$ as $n \to \infty$.
- 12. Let $\{a_n\}$ be a bounded sequence. Assume that $a_{n+1} \ge a_n 2^{-n}$. Check the convergence of $\{a_n\}$.
- 13. Let $a_1 = \sqrt{101}$ and define $a_n = \sqrt{101 + a_{n-1}}$ for $n \in \mathbb{N}$. Then check the convergence of $\{a_n\}$ and also find the limit if it converges.

14. Let $0 < b_1 < a_1$. Define the two sequences $\{a_n\}$ and $\{b_n\}$ as follow:

$$a_{n+1} := \frac{a_n + b_n}{2}$$
 and $b_{n+1} := \sqrt{a_n b_n}$, for $n \in \mathbb{N}$.

Then check the convergence of $\{a_n\}$ and $\{b_n\}$. Also find the limit if they converge.

- 15. If $\{a_n\}$ is a bounded sequence of real numbers and $\liminf_{n\to\infty} a_n = l$, prove that there is a subsequence of $\{a_n\}$ which converge to l. Also, prove that no subsequence of $\{a_n\}$ can converge to a limit less than l.
- 16. Find the lim sup and lim inf if they exist for the sequences given below. Also check the convergence of them and find the limit if they converge.

(a)
$$a_n = \sqrt{n^2 + 5n} - n$$

(b)
$$a_1 = 3$$
 and $a_{n+1} = 1 - \frac{1}{a_n}$

(c)
$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

(d)
$$\left\{2, -1, \frac{3}{2}, -\frac{1}{2}, \frac{4}{3}, -\frac{1}{3}, \dots\right\}$$

(e)
$$a_n = \sin\left(\frac{n\pi}{7}\right)$$

(f)
$$\{1, 2, 3, 1, 2, 3, 1, 2, 3, \ldots\}$$

(g)
$$a_n = \left(1 + \frac{1}{n}\right)^n$$

(h)
$$x_1 = 1$$
, $x_2 = 2$ and $x_{n+2} = \frac{1}{2}(x_{n+1} + x_n)$ for $n \ge 1$.

(i)
$$a_n = \frac{\{n\pi\}}{n}$$
 where $\{n\pi\}$ is the fractional part of $n\pi$.

(j)
$$a_n = \frac{\sin n}{n}$$
 for $n \in \mathbb{N}$.